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Flat histogram simulation of lattice polymer systems
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We demonstrate the use of an algorithm called the Flat Histogram sampling algorithm for the simulation of
two-dimensional lattice polymer systems. Thermodynamic properties, such as the average energy or entropy
and other physical quantities such as the end-to-end distance or radius of gyration can be easily calculated
using this method. The ground-state energy can also be determined. We also explore the accuracy and limita-
tions of this method.
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[. INTRODUCTION that moves must be reversible, a general equation called the
broad histogram equation can be deriyé&d].

With the rapid rise of computing power, Monte Carlo  Although the definition ofN(o,AE))e works well for
methods[1] have become an important tool for studying Ising model and can be used to construct the transition ma-
high-dimensional systems such as proteins, polymers, arigix T(E—E"), this interpretation is less general and poses a
spin-glass models where many questions remain to be afproblem for other class of problems, such as polymer system.
swered. While the Metropolis algorithi2], due to its sim- We shall define a more general quantif,(E—E'), the
plicity, remains the most popular choice of method, it facegransition matrix at infinite temperature or simply called “in-
some severe drawbacks. First, the dynamics are slow for fnite temperature transition matrix.” The matrix elements of
class of problems that involve rugged energy landscapekhe infinite temperature transition matrix reduces to
with multiple local minima. Second, a series of simulation at{N(o,AE))g for some particular cases. The density of states
different temperatures is needed to obtain the temperatumE), corresponds to the left eigenvector of the infinite tem-
dependence of thermodynamic quantities. Coupled with slowperature transition matrix. However, it is easier to obtain the
dynamics, the computation time can be prohibitive. Third, itdensity of states through another set of equations, the de-
is difficult to calculate free energy or entropy using thistailed balance equatiorn@nalogous to the broad histogram
method. equation explained later. Our procedure for solving the den-

While the use of histogram methd8] can alleviate the sity of states is also different from what is prescribed by the
second problem by reweighting the canonical distributionbroad histogram method.
the accuracy is limited to a small region in a parameter In the following section, we shall briefly describe our
space. Recent methods based on the direct computation simulation model, the heteropolyméHP) model, and its
the density of states are capable of overcoming the abovesonnection to protein folding. Section Il is on the transition
mentioned drawbacks of Metropolis algorithm. The multica-matrix Monte Carlo and flat histogram sampling algorithm.
nonical method4] is the earliest of these. Entropic sampling We shall discuss how it can be applied to polymer models.
[5] is commonly cited as an equivalent but simpler formula-We give some numerical results in Sec. IV and the conclu-
tion of multicanonical method. The flat histogram samplingsion in Sec. V.
algorithm[6] is able to generate a flat histogram in energy
space similar to multicanonical simulations, but in a simpler
and more efficient way. The transition matrix Monte Carlo
method[7—-9] can be used to either obtain the density of One of the most challenging problems in computational
states directly or construct the canonical distribution for dif-biology is the problem of protein folding. Proteins are het-
ferent temperatures. The method is based upon the definitiagropolymer consisting of long chains of amino acids. It is
of a stochastic matrix, the transition matiXE—E'). The  observed that proteins generally adopt a single unique “na-
flat histogram sampling algorithm is an ideal algorithm fortive” structure. The biological function of a protein is often
obtaining the transition matrix elements through simulationsintimately dependent upon the precise geometrical structure

The transition matrix Monte Carlo method and associatef this folded native state. How does the protein encodes this
flat histogram sampling algorithm are closely related to theunique native state in an extremely large conformational
broad histogram methdd 0,11]. However, when it was first space? Understanding this will be a major breakthrough with
proposed by Oliveirat al. in 1996, the dynamics gave in- implications in biochemistry and drug design.
correct results in that the method did not generate true mi- It is believed that the native state lies at the global free
crocanonical averagd$]. When corrected, the flip rate is energy minimum. Only a small fraction of the total confor-
identical to flat histogram’s but the name remains a historianational space can be explored using high-resolution force-
misnomer. A central quantity in the broad histogram formu-field methods. Even more computing power is required when
lation is (N(o,AE))g, the microcanonical average of the solvent effects are included. Hence coarse grained models
number of potential moves that increase energy Aly  have been developed to model the folding process. The HP
=E'—E. Using this definition together with the requirement model[13] is a commonly used simple lattice model with the

Il. THE HP MODEL
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basic assumption that it is the hydrophobic force that deter-

mines the native structure of the protein. The model recog- . EfE Y P(o)W(o—0a')

nizes only two types of amino acids: hydropholfit) and (7)=E E(o")=F'

polar (P). There are some good arguments for supporting

this assumption, which we shall not elabortd]. Our chief =L E_E Y P(e)W(e'—a). (5
concern is to study the statistical mechanical aspect of the (7)=E E(oe")=F’

model and the performance of our algorithm. Given a Seyt the configuration probability distribution is a function of

quence ofH anq P,_each self-avoiding chain on a two- energy only, i.e.P(o)=f(E(0)), and defining the transition
dimensional lattice is counted as one conformation. Onlymatrix in energy as

nonbonded neighboringlH contributes to the total energy,
i.e., egqu=—1 and eyp=e€pp=0. Under such conditions,
low-energy conformations are compact wkhresidues re- T(E-E)= L 2
siding mainly in the core an@ residues on the outside. The N(E) g@=E E(o))—E'
principle disadvantage of this model is that it leads to highly

degenerate ground states, especially in three dimensionge have

[15,16].

W(o—o"), (6)

n(E)f(E)T(E—E")=n(E")f(E")T(E'—E). @)
lIl. TRANSITION MATRIX MONTE CARLO AND FLAT
HISTOGRAM SAMPLING METHOD The transition matrixT(E—E’) is also a stochastic matrix

In a Monte Carlo simulation, it is usual to generate awith the histogramh(E) =n(E)f(E)/Z being the equilib-

sequence of statds, o2, . . .} using a Markov chain where "M distribution:
each state denoted loylies in the phase space of the model.
The Markov chain is defined by a transition matki%(o

—o'). This stochastic matrix must satisty, W(o—o") EE: h(E)T(E—~E")=h(E"). ®
=1 andW(o—¢')=0. In addition, we require the detailed
balance condition Since the acceptance ratéo— ¢’) in Eq.(3) is the same
for configurations with a fixed energ{,(E—E’) can also
P(o)W(o—0a')=P(c")W(o' — o) (1)  be written as a product of two independent factors—the in-

finite temperature transition matrik,,(E—E’) and accep-

to guarantee an equilibrium probability distributiét(o), ~ tance rate in energg(E—E’):
ie.,
T(E-E)=T.(E—E)a(E—E’), E#E, (9

2 P(o)W(o—0o')=P(d’). 2 wherea(E—E") can be any acceptance rate satisfying Eq.
o (1), the detailed balance equation, e.g., Metropolis accep-
tance rate miéL,f(E’)/f(E)), and

It is useful to view the matrisV(o— ') as composed of
two independent parts—selection probabi@fo— o’) and S ,
acceptance rate(c— o). T(E—E)= 3 Slo=a)

10
E(o)=E E(o')=E’ n(E) ( )

W(o—o")=S(o0—0o")a(oc—a"). 3 WhenS(o— o) is taken to be a constant, the expression

] . can be simplified. For example, in spin systems we usually
For example, the standard Metropolis algorith@h uses pick a spin randomly to be flipped so thete— o')= 1IN,
for o andg’ related by a single spin flip and zero otherwise,

P(o') whereN is the total number of spins. In this case

,m), O'Q&O'I, (4)

a(c—o')= min( 1
1 N(o,AE) (N(o,AE))g

' ' . T (E—E')=—= = ,

with S(o0—o') usually set to a constant. We can easily nN(E) g@=e N N

check that it satisfies the detailed balance condition when the (12)

selection probabilityS is symmetric, i.e.S(c—0c')=S(o”’

— o). This symmetry inS can be relaxed for general Monte whereAE=E’'—E andN(o,AE) represents the number of

Carlo simulation[17] but is needed for the flat histogram spins that changes the energy of the current configuration

sampling algorithm. by AE when flipped, i.e.,N(o,AE)/N=2¢g,-gS(o
By summing up the detailed balance equations for all—o"’).

stateso with energyE and all statesr’ with energyE’, we Substituting the Eq(9) into Eq. (7), and using the equa-

have tion
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L ~ TABLE |I. Density of states for the sequence
_‘_$_, \, " Ij I . HHHPHPHPPHPHPH n(E) is Monte Carlo results using the

L - S flat histogram sampling algorithm ant(E) is through enumera-
o o--o tion.
FIG. 1. Three types of moves, i.e., end, corner, and crankshaft E n(E) HE) % error
move.
, , , 581340 540416.37 7.04
f(E)a(E—~E")=f(E")a(E'~E), (12) ~1 228416 217016.11 5.00
which is derived from the detailed balance equation Egjs. -2 56344 55837.55 0.89
and (3) with the requirement tha®(o—o') is symmetric, -3 12472 12666.23 1.56
which also implies that moves must be reversible, we ob- —4 2432 2465.45 1.38
tained a set of equations -5 464 485.93 473
-6 24 23.66 1.42
N(E)T..(E—E")=n(E")T.(E'—E). (13 -7 8 8 0

WhenS(o—0¢') is fixed to a constant, we can write

min(1,n(E)/n(E")), the simulation procedure is different.
N(E){N(o,AE))e=n(E')(N(c’,—AE))e. (14  We use a cumulative average to construct the acceptance rate

during simulation, i.e.,

This equation, known as broad histogram equation, was first

presented by Oliveira ifll] and by Berg and Hansmann , ,

[18]. Their derivation is based on property that moves be- T.(E— E')~W 2 Serye 2 Sla'—a'h,

tween configurations are reversible and is somewhat simpler E(o")=E’ 17)

than our arguments above.

However, the interpretation dii(o,AE) cannot be ap-
plied when the selection probability is not a constant as th
definition of N(o,AE) limits it to be an integer. The general f
definition of T,,(E—E") that can be applied to any choice of
S(c—a') is given by Eq.(10). Equation(13) is a general
equation with two important assumptions made in our for-
mulation: the probability of every configuration is a function
of its energy only and allowable moves between any pair o

configurations are selected with the same probability in bo“?essary to first define the move set. There are several choices
d|r(1a_c;]t|ons detailed bal i th | and it has been shown that different move sets can affect
€ energy detalled balance equation can thus aiso blﬁnetlc guantities, like the mean first passage tim@]. We

whereH(E) ==, 8¢, g is the cumulative histogram for a
iven energym is the total number of samples generated so
ar, o is the configuration at stépof the simulation, and-"’
are the available configurations that can be reached from
in one move. Whenever data is unavailable to compute the
acceptance rate, we simply accept the move in order to
]gample the unexplored states.

To model protein folding by a Markov process, it is nec-

written as use a local move set consisting of end, corner, and the crank-
h(BE)T(E—E"a(E—~E")=h(E")T(E'>E)a(E'—E). 0= Metropolis algorithm '
(15) ——- Flat Histogram
. . . . ---- Single histogram (T=0.75)
If we require that the histogram is constant or flat, i.e., _g L exact enumeration
h(E)=h(E'), we choose the acceptance rate
| To(E'—E) el l
a(E—E’)=min| 1— (16 A
T.(E—E") v T —
o3| ! - % lyiﬁ*?ﬁ»‘\“*' |
This equation was first proposed (6] and [9]. While 1 g 7
equivalent to the entropic samplingp] acceptance rate '!ir- 3
fay ! ~ i
-0.4 | nil i 10° 1 1
k
! 10'8 | L
05 | 0 0.5 1 15
' 0.5 1 1.5
T

FIG. 3. The average energy per monomer against temperature.
The inset shows the relative error between using enumergteyl
FIG. 2. Native state for the sequendéAHPHPHPPHPHPH and each method.
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shaft move 20,21]. These are shown ip Fig. 1. Note that the 22 —— Matropolis algorithm
end moves are restricted to 90° rotations and thus can hav — —~- Flat Histogram

one or two possible positions depending on current configu- | -= -~ Single histogram (T=0.75)
ration. The set of valid moves from current conformatien exact enumeration
to new conformatiorr’ is those that can be performed using

end, corner or crankshaft move, while preserving the ex-
cluded volume constraint.

The choice of the move set used will affect the sampling 1.8
space of configurations and also the correlation time of our
algorithm. It can be shown that our set of local moves is
nonergodic, meaning that it does not generate all possible
self-avoiding chains on the lattice. However, the number of 1.6 |

rel. error

such configurations is probably negligible compared to our 107 | |
sampling errof21]. We can also consider the definition of 10° ‘ .

our model to include only those states accessible by the 0 0.5 1 1.5
move set specified. As long as our native state is accessible 14 0 05 1 15
there will not be a problem. T

The ergodicity problem can be overcome by pivot moves
[22]. Pivot moves are defined by randomly choosing a mono- FIG. 4. The radius of gyration against temperature. The inset
mer as a pivot and rotating or reflecting one segment of thehows the relative error between using enumeraté) and each
chain with the pivot as origin. However, pivot moves alsomethod.
fills more entry in our transition matrix making it less
banded. Moreover, it is also found that pivot moves do nofacceptance ratio in Eq16). For cases where no moves are
necessarily lead to faster dynamics in the simulafibs. possible for the monomer picked, the current configuration is

Although some studies only consider conformations asncluded in the average and the time step is incremented by
distinct when they are not related by reflection or rotationalone. This method of selecting move is used in R28]. It
symmetry, the choice should not matter since they differ by aelies on the fact that in moving to a new configuration using
factor of 8 in counting the number of states. For the speciah particular type of move, only the same type of move in
configurations on a straight line, the factor is 4. Howeverreverse can bring it back to the original configuration. Thus,
such configurations have the highest energy and are thube move set must be chosen with this property to ensure that
almost negligible. selection probability is symmetric.

While the selection probability is commonly taken to be (3) We can designate end moves and corner moves as
1/N in spin systems, we have some freedom in deciding thene-monomer move and crankshaft move as two-monomer
specific selection probabilities based on different moves irmove. With probability, e.g., 0.2, we choose to perform one-
polymer systems. We list three possibilities. monomer move; if an end monomer is picked, end moves are

(1) Given a configuration, we can construct a list of all selected and corner moves otherwise, in the same manner as
possible valid moves satisfying the excluded volume conabove(see footnote With remaining probability 0.8, pick a
straint. Each move is selected with a fixed equal probabilitymonomer from 1 tdN— 3, a two-monomer move is selected
In practice, we assign moves into a list that can contain up to
M moves. SinceM is the upper bound to maximum possible 1 .
valid moves available to any configuration, the remaining ——- Flat Histogram
unassigned moves are considered invalid. A move is pickec exact enumeration
at random. If it is valid, we accept the move using the ac- 08
ceptance ratio in Eq16). In our simulation, we se¥l equal
to N, the number of monomers.

(2) Given a configuration, we pick a monomer at random. 06
If it is an end monomer, it is able to rotate to two possible
positions! We select one randomly without considering the
excluded volume constraint. If it is not an end monomer, 04
then corner or crankshaft moves are possible. These twc
moves are mutually exclusive. Once a move is selected, we
check the excluded volume constraint. If a move results in 0.2
moving a monomer into an already occupied position, the
move is rejected. Otherwise, we accept the move using the I 10 5 s ; 15'

0 L 1
0 0.5 1 1.5

T

[

—_
o

rel. error
L

py
(=
T

This is different from our case where 180° rotations are not al-
lowed. It is necessary for the number of possible moves of each FIG. 5. The average entropy per monomer against temperature.
type to be unambiguous for this case. The inset shows the relative error.
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TABLE II. Sequence oHP monomers used in simulation with their lowest energy and native state time
averaged from 1Dsimulations. The last column is the standard deviationqof

N Sequence Eo To Ty

10 HPHPPHPPHH —4 339.7 405.7
14 HHHPHPHPPHPHPH -7 5641.4 6340.4
20 HPHPPHHPHPPHPHHPPHPH -9 81788.1 85478.5
25 PPHPPHHPPPPHHPPPPHHPPPPHH -8 196137.9 318722.3

if monomers fromi to i +3 forms a crankshaft otherwise a are about 140 temperature points in the Metropolis simula-
move is unsuccessful. This method is used in R24]. tion, which requires around a 100 times more computing
For compact configurations, the rejection rate for the sectime compared to the flat histogram simulation.
ond method would be very high. We use the first method, The plots indicate that the Metropolis algorithm becomes
although a largeM can also make the method inefficient for ynreliable below around=0.5. This slowing down in dy-
compact(thus low-energy configurations since the number namics is also found if23] and attributed to the increasingly
of possible moves is low compared to the valusofHow-  geep kinetic traps with decreasing temperature. The flat his-
ever, this can be overcome if aifold way simulation[25]  ogram sampling algorithm is unaffected by this effect with
is done. A move is always accepted in tNefold way and  gjightly better accuracy for low-temperature range. The
the average lifetime of a configuration is taken into accountsim‘:ﬂe histogram method also produces roughly the same de-
when averaging. The first method also has the advantage gfee of accuracy. Here we do not observe the reweighting
saving some computations. Since the selection probability ig rors due to the exponential decay of the canonical distribu-
a constant, we can just add a const@ejuivalent to counting  tion pecause the energy spectrum is narrow and thus ad-
moves when calculatingr.(E—E’) in Eq. (10). The listof  gquately sampled. The single histogram method works well
moves can also be used in constructinghafold way simu- iy in such a situation. The entropy that can be easily cal-
lation. For other choices of selection probability, we will -jated from the knowledge of(E), is shown in Fig. 5. It is
have to calculat&(o— ") explicitly for each move before  gitficult to obtain this from Metropolis simulation.
adding. OnceT..(E—~E’) is sampled, we solve Eq13). Finding the energy of the native state is also an important
Sincen(E) varies by a huge order of magnitude, we solvedask in protein folding. To generate the native states using
for Inn(E) instead. Broad histogram method uses a forwardyietropolis algorithm, the temperature must be low enough
difference scheme of integration. We solve it instead using &g that the canonical distribution covers the low-energy
least squares method. When multiple simulations are peiange adequately. However, the canonical distribution has
formed, we can view it as an optimization problem taking theyiqth \/N and low-temperature simulation causes the system

variance of sampling data into accousj. to be trapped in local minima. Various methods, such as
genetic algorithnj26] and methods employing heuris{i27]
IV. NUMERICAL RESULTS have been proposed to overcome this problem. Often, an

annealing schedule is adopted whereby the temperature is
We present results on a sequence with 14 monomers witlowered as the simulation progress. There is no standard way
the sequenceHHHPHPHPPHPHPH Fig. 2. Through and considerable trial and error are necessary.
enumeration, we found that this sequence has a unique The flat histogram sampling algorithm can be used as a
ground statdi.e., eight possible configurations in our count- method for determining the native state energy. Since the
ing) of energy —7. The full density of states is given in energy barriers no longer exist, we expect a random walk
Table I. along the energy scale in the ideal case. An advantage is that
The average energy per monomer and radius of gyratiom most polymer models, the energy range do not increase
are plotted in Figs. 3 and 4 and are compared with the singleapidly with system size. We also do not have to devise any
histogram method and the Metropolis algorithm. We usedannealing schedule or adjust many parameters. We can there-
10° Monte Carlo steps for the flat histogram sampling algo-fore use our algorithm for determining the native state en-
rithm and each temperature point of Metropolis algorithmergy. Although we cannot attach any physical significance to
and also the single histogram reweightedlat0.75. There the time for finding the native state since the ensemble is

TABLE lll. Tunneling times, 7, and 74 for different sequences.

N Eo Ty o count Tq o count

10 -4 66.8 60.7 4272 167.3 208.3 4271
14 -7 592.6 551.5 2615 3229.3 3940.6 2615
20 -9 2224.3 3612.3 638 13427.8 13976.7 638
25 -8 8418.0 9616.3 190 44214.1 61316.7 190
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10° with specific properties. The probability of selecting a se-
o1, quence with this property from all possible sequences is very
107 01, . small. This leads to the problem of designing sequences with
bz, . proteinlike properties.
10 T :0:’,:’,5.9 E We fit the times to find the minimum-energyative
e e NS states and the tunneling times for the four sequences to a
10° | ’ E power law. The time to find native state follows approxi-
\ mately 7,xN’% The “up” and “down” tunneling time
0 e 3 gives the fitted parameter, N> and r4 N°9, respectively.
o L 1 This suggests that the algorithm takes increasingly longer
time to reach the lowest-energy states but moves easily to-
102 | ] wards the upper-energy levels. It reflects our observation that
the flat histogram sampling algorithm does not scale very
10 [ ] well for longer chains especially when the density of states
increase sharply with energy. This also implies that the per-
0 formance is not ideal for sequences with a unique native

1 10 100

N ground state. We note that our simulation is non-Markovian

and thus the convergence is difficult to analyze. This can
FIG. 6. The points are native state time and tunneling timedead to detailed balance violatid28]. However, this prob-
obtained from simulation. The straight lines are fits to a power lamlem can be alleviated by a two pass simulation. The first pass
TocNP, is the same as before. The second pass uses a fixed flip rate,
min(1,n(E)/n(E")), obtained from the first pass.

non-Boltzmannmulticanonical, it is still useful for analyz-

ing the performance of our algorithm. This native state time
7o, the time to reach the native state from an unfolded con- We have shown that the flat histogram sampling algo-
formation, is shown for four sequences in Table Il. We selectithm, which was first proposed and implemented for spin
the first two sequence to have unigue native state. The othelystems, can be used for the simulation of lattice polymer

V. CONCLUSION

two sequences were taken frd26]. systems. We give some measures of its accuracy and also
The tunneling time can also be used as a measure of thefficiency in terms of thermodynamic properties, native state
efficiency of our algorithm. We denotg,, the “up” tunnel-  time, and tunneling times. The current implementation in

ing time as the average Monte Carlo steps taken for a stat&vo dimensions is useful for up to about 20 monomer HP
with minimum energy to reach a state with maximum energychain. Generalization to three dimensions is straightforward,
while 74, the “down” tunneling time is for the opposite but it can be less efficient due to a large number of possible
direction. These are shown in Table Ill. Unlike spin systemsstates a polymer can go into. We would like to emphasize
where the two tunneling times are the same due to the symhat the flat histogram sampling algorithm is still vastly su-
metry in the Hamiltonian, it is faster to tunnel to higher perior to Metropolis algorithm, especially in terms of accu-
energies than to lower energies. racy for low-temperature properties. The simulation time is

Figure 6 shows the general behavior of the native statenodest as there is no need for simulation at each temperature
time and tunneling times as the size increases. It is usual ipoint. It also has the advantage of easily obtaining the den-
disorder systems to average over different random realizasity of states for free energy or entropy calculations. While
tions corresponding to different sets of coupling constants othe algorithm is rather basic, there are improvements to be
sequences. However, it is recognized that proteins are nebade such as the extensions and modifications proposed in
random sequences since they fold into unique native statd®ef.[8].
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