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Flat histogram simulation of lattice polymer systems

Lik Wee Lee and Jian-Sheng Wang
Department of Computational Science, National University of Singapore, Singapore 119260, Republic of Singapore

~Received 25 June 2001; published 22 October 2001!

We demonstrate the use of an algorithm called the Flat Histogram sampling algorithm for the simulation of
two-dimensional lattice polymer systems. Thermodynamic properties, such as the average energy or entropy
and other physical quantities such as the end-to-end distance or radius of gyration can be easily calculated
using this method. The ground-state energy can also be determined. We also explore the accuracy and limita-
tions of this method.

DOI: 10.1103/PhysRevE.64.056112 PACS number~s!: 05.10.2a, 02.70.Uu, 75.40.Mg
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I. INTRODUCTION

With the rapid rise of computing power, Monte Car
methods@1# have become an important tool for studyin
high-dimensional systems such as proteins, polymers,
spin-glass models where many questions remain to be
swered. While the Metropolis algorithm@2#, due to its sim-
plicity, remains the most popular choice of method, it fac
some severe drawbacks. First, the dynamics are slow f
class of problems that involve rugged energy landsca
with multiple local minima. Second, a series of simulation
different temperatures is needed to obtain the tempera
dependence of thermodynamic quantities. Coupled with s
dynamics, the computation time can be prohibitive. Third
is difficult to calculate free energy or entropy using th
method.

While the use of histogram method@3# can alleviate the
second problem by reweighting the canonical distributi
the accuracy is limited to a small region in a parame
space. Recent methods based on the direct computatio
the density of states are capable of overcoming the ab
mentioned drawbacks of Metropolis algorithm. The multic
nonical method@4# is the earliest of these. Entropic samplin
@5# is commonly cited as an equivalent but simpler formu
tion of multicanonical method. The flat histogram sampli
algorithm @6# is able to generate a flat histogram in ener
space similar to multicanonical simulations, but in a simp
and more efficient way. The transition matrix Monte Ca
method @7–9# can be used to either obtain the density
states directly or construct the canonical distribution for d
ferent temperatures. The method is based upon the defin
of a stochastic matrix, the transition matrixT(E→E8). The
flat histogram sampling algorithm is an ideal algorithm f
obtaining the transition matrix elements through simulatio

The transition matrix Monte Carlo method and associa
flat histogram sampling algorithm are closely related to
broad histogram method@10,11#. However, when it was firs
proposed by Oliveiraet al. in 1996, the dynamics gave in
correct results in that the method did not generate true
crocanonical averages@6#. When corrected, the flip rate i
identical to flat histogram’s but the name remains a histo
misnomer. A central quantity in the broad histogram form
lation is ^N(s,DE)&E , the microcanonical average of th
number of potential moves that increase energy byDE
5E82E. Using this definition together with the requireme
1063-651X/2001/64~5!/056112~7!/$20.00 64 0561
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that moves must be reversible, a general equation called
broad histogram equation can be derived@12#.

Although the definition of̂ N(s,DE)&E works well for
Ising model and can be used to construct the transition
trix T(E→E8), this interpretation is less general and pose
problem for other class of problems, such as polymer syst
We shall define a more general quantity,T`(E→E8), the
transition matrix at infinite temperature or simply called ‘‘in
finite temperature transition matrix.’’ The matrix elements
the infinite temperature transition matrix reduces
^N(s,DE)&E for some particular cases. The density of sta
n(E), corresponds to the left eigenvector of the infinite te
perature transition matrix. However, it is easier to obtain
density of states through another set of equations, the
tailed balance equations~analogous to the broad histogra
equation! explained later. Our procedure for solving the de
sity of states is also different from what is prescribed by
broad histogram method.

In the following section, we shall briefly describe ou
simulation model, the heteropolymer~HP! model, and its
connection to protein folding. Section III is on the transitio
matrix Monte Carlo and flat histogram sampling algorith
We shall discuss how it can be applied to polymer mode
We give some numerical results in Sec. IV and the conc
sion in Sec. V.

II. THE HP MODEL

One of the most challenging problems in computatio
biology is the problem of protein folding. Proteins are he
eropolymer consisting of long chains of amino acids. It
observed that proteins generally adopt a single unique ‘‘
tive’’ structure. The biological function of a protein is ofte
intimately dependent upon the precise geometrical struc
of this folded native state. How does the protein encodes
unique native state in an extremely large conformatio
space? Understanding this will be a major breakthrough w
implications in biochemistry and drug design.

It is believed that the native state lies at the global fr
energy minimum. Only a small fraction of the total confo
mational space can be explored using high-resolution fo
field methods. Even more computing power is required wh
solvent effects are included. Hence coarse grained mo
have been developed to model the folding process. The
model@13# is a commonly used simple lattice model with th
©2001 The American Physical Society12-1
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LIK WEE LEE AND JIAN-SHENG WANG PHYSICAL REVIEW E64 056112
basic assumption that it is the hydrophobic force that de
mines the native structure of the protein. The model rec
nizes only two types of amino acids: hydrophobic~H! and
polar (P). There are some good arguments for support
this assumption, which we shall not elaborate@14#. Our chief
concern is to study the statistical mechanical aspect of
model and the performance of our algorithm. Given a
quence ofH and P, each self-avoiding chain on a two
dimensional lattice is counted as one conformation. O
nonbonded neighboringHH contributes to the total energy
i.e., eHH521 and eHP5ePP50. Under such conditions
low-energy conformations are compact withH residues re-
siding mainly in the core andP residues on the outside. Th
principle disadvantage of this model is that it leads to hig
degenerate ground states, especially in three dimens
@15,16#.

III. TRANSITION MATRIX MONTE CARLO AND FLAT
HISTOGRAM SAMPLING METHOD

In a Monte Carlo simulation, it is usual to generate
sequence of states$s1,s2, . . . % using a Markov chain where
each state denoted bys lies in the phase space of the mod
The Markov chain is defined by a transition matrixW(s
→s8). This stochastic matrix must satisfy(s8W(s→s8)
51 andW(s→s8)>0. In addition, we require the detaile
balance condition

P~s!W~s→s8!5P~s8!W~s8→s! ~1!

to guarantee an equilibrium probability distributionP(s),
i.e.,

(
s

P~s!W~s→s8!5P~s8!. ~2!

It is useful to view the matrixW(s→s8) as composed o
two independent parts—selection probabilityS(s→s8) and
acceptance ratea(s→s8).

W~s→s8!5S~s→s8!a~s→s8!. ~3!

For example, the standard Metropolis algorithm@2# uses

a~s→s8!5minS 1,
P~s8!

P~s! D , sÞs8, ~4!

with S(s→s8) usually set to a constant. We can eas
check that it satisfies the detailed balance condition when
selection probabilityS is symmetric, i.e.,S(s→s8)5S(s8
→s). This symmetry inS can be relaxed for general Mont
Carlo simulation@17# but is needed for the flat histogram
sampling algorithm.

By summing up the detailed balance equations for
statess with energyE and all statess8 with energyE8, we
have
05611
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E(s)5E

(
E(s8)5E8

P~s!W~s→s8!

5 (
E(s)5E

(
E(s8)5E8

P~s8!W~s8→s!. ~5!

If the configuration probability distribution is a function o
energy only, i.e.,P(s)} f „E(s)…, and defining the transition
matrix in energy as

T~E→E8!5
1

n~E! (
E(s)5E

(
E(s8)5E8

W~s→s8!, ~6!

we have

n~E! f ~E!T~E→E8!5n~E8! f ~E8!T~E8→E!. ~7!

The transition matrixT(E→E8) is also a stochastic matrix
with the histogramh(E)5n(E) f (E)/Z being the equilib-
rium distribution:

(
E

h~E!T~E→E8!5h~E8!. ~8!

Since the acceptance ratea(s→s8) in Eq. ~3! is the same
for configurations with a fixed energy,T(E→E8) can also
be written as a product of two independent factors—the
finite temperature transition matrixT`(E→E8) and accep-
tance rate in energya(E→E8):

T~E→E8!5T`~E→E8!a~E→E8!, EÞE8, ~9!

wherea(E→E8) can be any acceptance rate satisfying E
~1!, the detailed balance equation, e.g., Metropolis acc
tance rate min„1,f (E8)/ f (E)…, and

T`~E→E8!5 (
E(s)5E

(
E(s8)5E8

S~s→s8!

n~E!
. ~10!

WhenS(s→s8) is taken to be a constant, the expressi
can be simplified. For example, in spin systems we usu
pick a spin randomly to be flipped so thatS(s→s8)51/N,
for s ands8 related by a single spin flip and zero otherwis
whereN is the total number of spins. In this case

T`~E→E8!5
1

n~E! (
E(s)5E

N~s,DE!

N
5

^N~s,DE!&E

N
,

~11!

whereDE5E82E andN(s,DE) represents the number o
spins that changes the energy of the current configuratios
by DE when flipped, i.e., N(s,DE)/N5(E(s8)5E8S(s
→s8).

Substituting the Eq.~9! into Eq. ~7!, and using the equa
tion
2-2
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FLAT HISTOGRAM SIMULATION OF LATTICE . . . PHYSICAL REVIEW E 64 056112
f ~E!a~E→E8!5 f ~E8!a~E8→E!, ~12!

which is derived from the detailed balance equation Eqs.~1!
and ~3! with the requirement thatS(s→s8) is symmetric,
which also implies that moves must be reversible, we
tained a set of equations

n~E!T`~E→E8!5n~E8!T`~E8→E!. ~13!

WhenS(s→s8) is fixed to a constant, we can write

n~E!^N~s,DE!&E5n~E8!^N~s8,2DE!&E8 . ~14!

This equation, known as broad histogram equation, was
presented by Oliveira in@11# and by Berg and Hansman
@18#. Their derivation is based on property that moves
tween configurations are reversible and is somewhat sim
than our arguments above.

However, the interpretation ofN(s,DE) cannot be ap-
plied when the selection probability is not a constant as
definition ofN(s,DE) limits it to be an integer. The genera
definition ofT`(E→E8) that can be applied to any choice
S(s→s8) is given by Eq.~10!. Equation~13! is a general
equation with two important assumptions made in our f
mulation: the probability of every configuration is a functio
of its energy only and allowable moves between any pai
configurations are selected with the same probability in b
directions.

The energy detailed balance equation can thus also
written as

h~E!T`~E→E8!a~E→E8!5h~E8!T`~E8→E!a~E8→E!.
~15!

If we require that the histogram is constant or flat, i.
h(E)5h(E8), we choose the acceptance rate

a~E→E8!5minS 1,
T`~E8→E!

T`~E→E8!
D . ~16!

This equation was first proposed in@6# and @9#. While
equivalent to the entropic sampling@5# acceptance rate

FIG. 1. Three types of moves, i.e., end, corner, and cranks
move.

FIG. 2. Native state for the sequenceHHHPHPHPPHPHPH.
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min„1,n(E)/n(E8)…, the simulation procedure is differen
We use a cumulative average to construct the acceptance
during simulation, i.e.,

T`~E→E8!'
1

H~E! (
i 51

m

dE(s i ),E (
E(s8 i )5E8

S~s i→s8 i !,

~17!

whereH(E)5( i 51
m dE(s i ),E is the cumulative histogram for a

given energy,m is the total number of samples generated
far, s i is the configuration at stepi of the simulation, ands8 i

are the available configurations that can be reached froms i

in one move. Whenever data is unavailable to compute
acceptance rate, we simply accept the move in order
sample the unexplored states.

To model protein folding by a Markov process, it is ne
essary to first define the move set. There are several cho
and it has been shown that different move sets can af
kinetic quantities, like the mean first passage time@19#. We
use a local move set consisting of end, corner, and the cr

ft

TABLE I. Density of states for the sequenc

HHHPHPHPPHPHPH. ñ(E) is Monte Carlo results using the
flat histogram sampling algorithm andn(E) is through enumera-
tion.

E n(E) ñ(E) % error

0 581340 540416.37 7.04

21 228416 217016.11 5.00

22 56344 55837.55 0.89

23 12472 12666.23 1.56

24 2432 2465.45 1.38

25 464 485.93 4.73

26 24 23.66 1.42

27 8 8 0

FIG. 3. The average energy per monomer against tempera
The inset shows the relative error between using enumeratedn(E)
and each method.
2-3
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LIK WEE LEE AND JIAN-SHENG WANG PHYSICAL REVIEW E64 056112
shaft move@20,21#. These are shown in Fig. 1. Note that th
end moves are restricted to 90° rotations and thus can h
one or two possible positions depending on current confi
ration. The set of valid moves from current conformations
to new conformations8 is those that can be performed usin
end, corner or crankshaft move, while preserving the
cluded volume constraint.

The choice of the move set used will affect the sampl
space of configurations and also the correlation time of
algorithm. It can be shown that our set of local moves
nonergodic, meaning that it does not generate all poss
self-avoiding chains on the lattice. However, the number
such configurations is probably negligible compared to
sampling error@21#. We can also consider the definition o
our model to include only those states accessible by
move set specified. As long as our native state is access
there will not be a problem.

The ergodicity problem can be overcome by pivot mov
@22#. Pivot moves are defined by randomly choosing a mo
mer as a pivot and rotating or reflecting one segment of
chain with the pivot as origin. However, pivot moves al
fills more entry in our transition matrix making it les
banded. Moreover, it is also found that pivot moves do
necessarily lead to faster dynamics in the simulation@15#.

Although some studies only consider conformations
distinct when they are not related by reflection or rotatio
symmetry, the choice should not matter since they differ b
factor of 8 in counting the number of states. For the spe
configurations on a straight line, the factor is 4. Howev
such configurations have the highest energy and are
almost negligible.

While the selection probability is commonly taken to
1/N in spin systems, we have some freedom in deciding
specific selection probabilities based on different moves
polymer systems. We list three possibilities.

~1! Given a configuration, we can construct a list of
possible valid moves satisfying the excluded volume c
straint. Each move is selected with a fixed equal probabi
In practice, we assign moves into a list that can contain u
M moves. SinceM is the upper bound to maximum possib
valid moves available to any configuration, the remain
unassigned moves are considered invalid. A move is pic
at random. If it is valid, we accept the move using the
ceptance ratio in Eq.~16!. In our simulation, we setM equal
to N, the number of monomers.

~2! Given a configuration, we pick a monomer at rando
If it is an end monomer, it is able to rotate to two possib
positions.1 We select one randomly without considering t
excluded volume constraint. If it is not an end monom
then corner or crankshaft moves are possible. These
moves are mutually exclusive. Once a move is selected
check the excluded volume constraint. If a move results
moving a monomer into an already occupied position,
move is rejected. Otherwise, we accept the move using

1This is different from our case where 180° rotations are not
lowed. It is necessary for the number of possible moves of e
type to be unambiguous for this case.
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acceptance ratio in Eq.~16!. For cases where no moves a
possible for the monomer picked, the current configuratio
included in the average and the time step is incremented
one. This method of selecting move is used in Ref.@23#. It
relies on the fact that in moving to a new configuration us
a particular type of move, only the same type of move
reverse can bring it back to the original configuration. Th
the move set must be chosen with this property to ensure
selection probability is symmetric.

~3! We can designate end moves and corner moves
one-monomer move and crankshaft move as two-mono
move. With probability, e.g., 0.2, we choose to perform on
monomer move; if an end monomer is picked, end moves
selected and corner moves otherwise, in the same mann
above~see footnote!. With remaining probability 0.8, pick a
monomer from 1 toN23, a two-monomer move is selecte

l-
h

FIG. 4. The radius of gyration against temperature. The in
shows the relative error between using enumeratedn(E) and each
method.

FIG. 5. The average entropy per monomer against tempera
The inset shows the relative error.
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TABLE II. Sequence ofHP monomers used in simulation with their lowest energy and native state
averaged from 104 simulations. The last column is the standard deviation oft0.

N Sequence E0 t0 st0

10 HPHPPHPPHH 24 339.7 405.7

14 HHHPHPHPPHPHPH 27 5641.4 6340.4

20 HPHPPHHPHPPHPHHPPHPH 29 81788.1 85478.5

25 PPHPPHHPPPPHHPPPPHHPPPPHH 28 196137.9 318722.3
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if monomers fromi to i 13 forms a crankshaft otherwise
move is unsuccessful. This method is used in Ref.@24#.

For compact configurations, the rejection rate for the s
ond method would be very high. We use the first meth
although a largeM can also make the method inefficient f
compact~thus low-energy! configurations since the numbe
of possible moves is low compared to the value ofM. How-
ever, this can be overcome if anN-fold way simulation@25#
is done. A move is always accepted in theN-fold way and
the average lifetime of a configuration is taken into acco
when averaging. The first method also has the advantag
saving some computations. Since the selection probabilit
a constant, we can just add a constant~equivalent to counting
moves! when calculatingT`(E→E8) in Eq. ~10!. The list of
moves can also be used in constructing anN-fold way simu-
lation. For other choices of selection probability, we w
have to calculateS(s→s8) explicitly for each move before
adding. OnceT`(E→E8) is sampled, we solve Eq.~13!.
Sincen(E) varies by a huge order of magnitude, we solv
for ln n(E) instead. Broad histogram method uses a forw
difference scheme of integration. We solve it instead usin
least squares method. When multiple simulations are
formed, we can view it as an optimization problem taking t
variance of sampling data into account@8#.

IV. NUMERICAL RESULTS

We present results on a sequence with 14 monomers
the sequenceHHHPHPHPPHPHPH Fig. 2. Through
enumeration, we found that this sequence has a un
ground state~i.e., eight possible configurations in our coun
ing! of energy27. The full density of states is given i
Table I.

The average energy per monomer and radius of gyra
are plotted in Figs. 3 and 4 and are compared with the sin
histogram method and the Metropolis algorithm. We us
106 Monte Carlo steps for the flat histogram sampling alg
rithm and each temperature point of Metropolis algorith
and also the single histogram reweighted atT50.75. There
05611
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are about 140 temperature points in the Metropolis simu
tion, which requires around a 100 times more comput
time compared to the flat histogram simulation.

The plots indicate that the Metropolis algorithm becom
unreliable below aroundT50.5. This slowing down in dy-
namics is also found in@23# and attributed to the increasingl
deep kinetic traps with decreasing temperature. The flat
togram sampling algorithm is unaffected by this effect w
slightly better accuracy for low-temperature range. T
single histogram method also produces roughly the same
gree of accuracy. Here we do not observe the reweigh
errors due to the exponential decay of the canonical distr
tion because the energy spectrum is narrow and thus
equately sampled. The single histogram method works w
only in such a situation. The entropy that can be easily c
culated from the knowledge ofn(E), is shown in Fig. 5. It is
difficult to obtain this from Metropolis simulation.

Finding the energy of the native state is also an import
task in protein folding. To generate the native states us
Metropolis algorithm, the temperature must be low enou
so that the canonical distribution covers the low-ene
range adequately. However, the canonical distribution
width AN and low-temperature simulation causes the sys
to be trapped in local minima. Various methods, such
genetic algorithm@26# and methods employing heuristic@27#
have been proposed to overcome this problem. Often,
annealing schedule is adopted whereby the temperatur
lowered as the simulation progress. There is no standard
and considerable trial and error are necessary.

The flat histogram sampling algorithm can be used a
method for determining the native state energy. Since
energy barriers no longer exist, we expect a random w
along the energy scale in the ideal case. An advantage is
in most polymer models, the energy range do not incre
rapidly with system size. We also do not have to devise a
annealing schedule or adjust many parameters. We can th
fore use our algorithm for determining the native state
ergy. Although we cannot attach any physical significance
the time for finding the native state since the ensemble
5

TABLE III. Tunneling times,tu andtd for different sequences.

N E0 tu s count td s count

10 24 66.8 60.7 4272 167.3 208.3 4271

14 27 592.6 551.5 2615 3229.3 3940.6 261

20 29 2224.3 3612.3 638 13427.8 13976.7 638

25 28 8418.0 9616.3 190 44214.1 61316.7 190
2-5
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non-Boltzmann~multicanonical!, it is still useful for analyz-
ing the performance of our algorithm. This native state ti
t0, the time to reach the native state from an unfolded c
formation, is shown for four sequences in Table II. We sel
the first two sequence to have unique native state. The o
two sequences were taken from@26#.

The tunneling time can also be used as a measure o
efficiency of our algorithm. We denotetu , the ‘‘up’’ tunnel-
ing time as the average Monte Carlo steps taken for a s
with minimum energy to reach a state with maximum ene
while td , the ‘‘down’’ tunneling time is for the opposite
direction. These are shown in Table III. Unlike spin system
where the two tunneling times are the same due to the s
metry in the Hamiltonian, it is faster to tunnel to high
energies than to lower energies.

Figure 6 shows the general behavior of the native s
time and tunneling times as the size increases. It is usua
disorder systems to average over different random rea
tions corresponding to different sets of coupling constant
sequences. However, it is recognized that proteins are
random sequences since they fold into unique native st

FIG. 6. The points are native state time and tunneling tim
obtained from simulation. The straight lines are fits to a power
t}Np.
.

.

et
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with specific properties. The probability of selecting a s
quence with this property from all possible sequences is v
small. This leads to the problem of designing sequences w
proteinlike properties.

We fit the times to find the minimum-energy~native!
states and the tunneling times for the four sequences
power law. The time to find native state follows approx
mately t0}N7.1. The ‘‘up’’ and ‘‘down’’ tunneling time
gives the fitted parametertu}N5.1 andtd}N5.9, respectively.
This suggests that the algorithm takes increasingly lon
time to reach the lowest-energy states but moves easily
wards the upper-energy levels. It reflects our observation
the flat histogram sampling algorithm does not scale v
well for longer chains especially when the density of sta
increase sharply with energy. This also implies that the p
formance is not ideal for sequences with a unique na
ground state. We note that our simulation is non-Markov
and thus the convergence is difficult to analyze. This c
lead to detailed balance violation@28#. However, this prob-
lem can be alleviated by a two pass simulation. The first p
is the same as before. The second pass uses a fixed flip
min„1,n(E)/n(E8)…, obtained from the first pass.

V. CONCLUSION

We have shown that the flat histogram sampling alg
rithm, which was first proposed and implemented for sp
systems, can be used for the simulation of lattice polym
systems. We give some measures of its accuracy and
efficiency in terms of thermodynamic properties, native st
time, and tunneling times. The current implementation
two dimensions is useful for up to about 20 monomer H
chain. Generalization to three dimensions is straightforwa
but it can be less efficient due to a large number of poss
states a polymer can go into. We would like to emphas
that the flat histogram sampling algorithm is still vastly s
perior to Metropolis algorithm, especially in terms of acc
racy for low-temperature properties. The simulation time
modest as there is no need for simulation at each tempera
point. It also has the advantage of easily obtaining the d
sity of states for free energy or entropy calculations. Wh
the algorithm is rather basic, there are improvements to
made such as the extensions and modifications propose
Ref. @8#.
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